A Study on the Texturing Design Guide Line of Concrete Pavement under Dynamic Load

Joo-Won SEO¹), Jun-Seong CHOI²), Hyung-Bae KIM³), Kwang-Ho LEE⁴)

¹) School of Civil and Environmental Engineering, Yonsei University
262 Seongsanno, Seodaemun-gu, Seoul, Korea
pooh@yonsei.ac.kr

²) Department of Civil and Environmental Engineering, Induk Institute of Technology
San 76, Weolge-dong, Nohwon-gu, Seoul, Korea

³) & ⁴) Korea Expressway & Transportation Research Institute
50-5 Sancheok-ri, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, Korea

ABSTRACT

Cement concrete pavement is constructed by using various texturing methods for providing cautions to drivers and enhancing frictional resistance. The surface texture could be changed by texturing methods, resulting in the increase of dynamic load due to the speed variation of heavy vehicles. In order to evaluate the dynamic load increment in the section treated with surface texturing, four kinds of heavy vehicles (class-4, class-5, class-6 and class-7) are selected considering the passing frequency and damage effect on cement concrete pavement. In addition, artificial profiles with three types of grooving (general grooving, drainage grooving and warning grooving) are made by the texturing design guide of the cement concrete pavement.

From the dynamic analysis, dynamic load increases up to 2.23% and 1.47% in the general grooving and drainage grooving, respectively, which shows those grooving types have a little dynamic effects on the surface of cement concrete pavement. However, in the warning grooving, dynamic load highly increases up to 10.09%, so that additional analyses are performed at the condition of the pavement with warning grooving at various width and spacing.

From the analyses, it is found that dynamic load increment in maximal when width and spacing of warning grooving are combination of width 10 cm, spacing 30 cm and width 6 cm, spacing 30 cm. Dynamic load increment of class-7 heavy vehicle in shown by 20% or more compared to other vehicles at the same speed. In order to evaluate dynamic load amplification factor at different warning grooving width and spacing, dynamic load increments for the several representative vehicles are compared. The results show that dynamic load is not as much affected by the width of the warning grooving as the spacing. Especially when the spacing of the warning grooving is 3 m, dynamic load increment is minimal.

This study has performed additional analyses of the divided spacing of warning grooving. From the results, it is found that the conditions with width 6 cm, spacing between 150 cm and 250 cm in the warning grooving make it possible to minimize the impacts of dynamic load.

1. INTRODUCTION

Cement concrete pavement should be implemented by various method of construction for the caution to the drivers and enhance of frictional resistance entailed on consecutive impact of joint. Because of this, it has been involved that not only the surface texture has been locally changed and that but also the increase in dynamic loads has resulted from the speed of heavy vehicle.

Along with the speed increase in a heavy vehicle and the change in road roughness, the increase in dynamic loads has directly applied to pavement surface being able to causing initial
damage. Therefore, it is imperative that we research for the way to calculate the dynamic loads followed by speed change of a heavy vehicle and understand the characteristics of the surface texture leading to the roughness of cement concrete pavement. As a fundamental material, the calculated dynamic loads could be utilized to decide to design the cement concrete pavement and plan the proper period for maintenance.

2. A Study on the Texturing Design Guide of Cement Concrete Pavement under Dynamic Load

Cement concrete pavement is constructed by using various texturing methods for providing cautions to drivers and enhancing frictional resistance. The surface texture could be changed by texturing methods, resulting in the increase of dynamic load due to the speed variation of heavy vehicles. In order to evaluate the dynamic load increment in the section treated with surface texturing, four kinds of heavy vehicles (class-4, class-5, class-6 and class-7) are selected considering the passing frequency and damage effect on cement concrete pavement (Figure 1). In addition, artificial profiles with three types of grooving (general grooving, drainage grooving and warning grooving) are made by the texturing design guide of the cement concrete pavement (Figure 2).

<table>
<thead>
<tr>
<th>The specific representation of heavy vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two axles heavy vehicle (class-4)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Four axles heavy vehicle (class-6)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Three axles heavy vehicle (class-5)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Five axles heavy vehicle (class-7)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The specific representation of heavy vehicle [1]

![Figure 2: Type of surface texturing on cement concrete pavement](image)
In this study, it is presented that representatives of the heavy vehicles have been selected as considered frequency the effect of damage in cement concrete pavement. Table 1 shows the vehicle passing frequency on the cement concrete pavement in this study.

| Vehicle passing frequency on cement concrete pavement in Korea expressways [3] |
|---------------------------------|---------------------------------|---------------------------------|
| Vehicle type | Chung-bu Highway | 2nd Chung-bu Highway | Chung-bu inland Highway |
| Class of heavy vehicle | | | |
| Small-class heavy vehicle | 1.2 | 1.3 | 2.3 |
| Normal-class heavy vehicle | 67.8 | 81.9 | 55.1 |
| Large-class heavy vehicle | 9.9 | 6.6 | 19 |
| Special I - class heavy vehicle| 20.5 | 10.2 | 23.1 |
| Special II - class heavy vehicle| 0.6 | 0.1 | 0.6 |

In this study, the vehicle passing frequency of cement concrete pavement is used to select the heavy vehicle class. Figure 1 presents the representation heavy vehicles for this study and it is proposed the artificial profile based on the texturing design guide.

By being appointed the representative speed as an average speed concept, it is calculated the changing quantity of the dynamic loads which are entailed with change of road roughness affected by the speed of heavy vehicles.

According to the texturing design guide of general grooving, drainage grooving, and warning grooving, it is proposed to an artificial profile. As a result of analysis of dynamic loads, Table 2 shows that, while the general grooving and the drainage grooving has increased up to 2.23 % and 1.47 % each, which has little impact, the warning grooving has increased up to 10.09 %, which is necessary enough to get to be researched.

<table>
<thead>
<tr>
<th>Grooving types</th>
<th>Texturing design guide for dynamic loads</th>
<th>Dynamic loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>General grooving</td>
<td>width 0.3 cm, spacing 0.3 cm</td>
<td>2.23%</td>
</tr>
<tr>
<td>Drainage grooving</td>
<td>width 5 cm, spacing 3000 cm</td>
<td>1.47%</td>
</tr>
<tr>
<td>Warning grooving</td>
<td>width 6 cm, spacing 30 cm</td>
<td>10.09%</td>
</tr>
</tbody>
</table>

In this study, artificial profile of warning grooving is made use of design guide of the warning grooving, and the database is constructed by analyzing of the 144 cases(the representation heavy vehicles, average speeds of heavy vehicles and artificial profile of warning grooving) with Trucksim program. TruckSim is a software tool for simulating and analyzing the dynamic behavior of medium to heavy trucks, buses and articulated vehicles [4]. The dynamic loads is analyzed by artificial profile of warning grooving’s design guide (Table 3). Table 4 presents the database of the dynamic load amplification factor.

It is concluded that the biggest changing aspects are; both are width 10 cm plus spacing 30 cm and width 6 cm plus spacing 30 cm in the warning grooving. Figure 3 shows that in case of class-7 heavy vehicle, it is regarded as the most dynamic load shown increase in more than 20% regardless of speed change.

In order to construe the change aspects of dynamic loads, it is asked to compare with the representative classes preceded by the fact, both width 6 cm and width 10 cm in the warning grooving, which is minimized the change quantity in dynamic loads. Especially, it is noted to refer width 3 cm in the warning grooving at the lowest.
Table 3. Warning grooving specification in Korea [5]

![Diagram of warning grooving specification]

<table>
<thead>
<tr>
<th>Warning grooving specification (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (D)</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Table 4. Dynamic loading amplification factors at various vehicle speeds and grooving specifications

<table>
<thead>
<tr>
<th>Heavy vehicle</th>
<th>Speed (km/h)</th>
<th>width 30 cm</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spacing 6 cm</td>
<td>spacing 10 cm</td>
<td>spacing 6 cm</td>
<td>spacing 10 cm</td>
<td>spacing 6 cm</td>
</tr>
<tr>
<td>class-4</td>
<td>5</td>
<td>1.1779</td>
<td>1.1855</td>
<td>1.1624</td>
<td>1.1703</td>
<td>1.0693</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.1396</td>
<td>1.1763</td>
<td>1.1028</td>
<td>1.1533</td>
<td>1.058</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.0948</td>
<td>1.163</td>
<td>1.0566</td>
<td>1.0681</td>
<td>1.0206</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.0911</td>
<td>1.1257</td>
<td>1.062</td>
<td>1.057</td>
<td>1.0095</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.0989</td>
<td>1.1444</td>
<td>1.0268</td>
<td>1.0504</td>
<td>1.026</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.0934</td>
<td>1.111</td>
<td>1.051</td>
<td>1.0631</td>
<td>1.0268</td>
</tr>
<tr>
<td>class-5</td>
<td>5</td>
<td>1.0892</td>
<td>1.098</td>
<td>1.058</td>
<td>1.067</td>
<td>1.043</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.0923</td>
<td>1.092</td>
<td>1.0502</td>
<td>1.06</td>
<td>1.0377</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.1009</td>
<td>1.084</td>
<td>1.0265</td>
<td>1.052</td>
<td>1.0226</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.0872</td>
<td>1.076</td>
<td>1.0422</td>
<td>1.049</td>
<td>1.0189</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.0596</td>
<td>1.078</td>
<td>1.0242</td>
<td>1.0472</td>
<td>1.0049</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.0842</td>
<td>1.0851</td>
<td>1.0315</td>
<td>1.0421</td>
<td>1.0046</td>
</tr>
<tr>
<td>class-6</td>
<td>5</td>
<td>1.0758</td>
<td>1.0859</td>
<td>1.0561</td>
<td>1.0592</td>
<td>1.0238</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.0715</td>
<td>1.0825</td>
<td>1.0476</td>
<td>1.057</td>
<td>1.0144</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.0869</td>
<td>1.0806</td>
<td>1.039</td>
<td>1.0541</td>
<td>1.0038</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.0751</td>
<td>1.0608</td>
<td>1.0316</td>
<td>1.0416</td>
<td>1.001</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.0932</td>
<td>1.0542</td>
<td>1.0438</td>
<td>1.0342</td>
<td>1.0152</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.0561</td>
<td>1.0611</td>
<td>1.0271</td>
<td>1.0389</td>
<td>1.0052</td>
</tr>
<tr>
<td>class-7</td>
<td>5</td>
<td>1.2092</td>
<td>1.2315</td>
<td>1.1691</td>
<td>1.2243</td>
<td>1.0681</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.2012</td>
<td>1.218</td>
<td>1.1552</td>
<td>1.1912</td>
<td>1.059</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.2202</td>
<td>1.211</td>
<td>1.1617</td>
<td>1.1819</td>
<td>1.052</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.2179</td>
<td>1.215</td>
<td>1.1632</td>
<td>1.187</td>
<td>1.048</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.2111</td>
<td>1.2156</td>
<td>1.1611</td>
<td>1.181</td>
<td>1.059</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.2096</td>
<td>1.2098</td>
<td>1.1605</td>
<td>1.1876</td>
<td>1.0528</td>
</tr>
</tbody>
</table>
Also, it has been designed to the dynamic load amplification factor involved with the change quantity in dynamic load which is divided based on the standard of the average dynamic axle load and we have made database on the texturing design guide of warning grooving and the dynamic load amplification factor referring to the 144 cases of driving speed of a heavy vehicles which are driven on the rough section by 5 km/h.

It proposed in addition that spacing elucidated let fixed to width 10 cm along with between spacing 1.5 m and 2.5 m, which is possible to mini mize the impact of dynamic load among 4 classes of heavy vehicles. Table 5,6 and 7 is presented a less dynamic effect on the texturing design guide of warning grooving on the tollgate area, climbing lanes and high-speed lanes.

Table 5. The optimum texturing design guide of warning grooving nearby tollgate area

<table>
<thead>
<tr>
<th>classification</th>
<th>average speed</th>
<th>minimum dynamic load amplification factor</th>
<th>warning grooving</th>
</tr>
</thead>
<tbody>
<tr>
<td>average speed</td>
<td>80 km/h</td>
<td>1.0480</td>
<td>width 6 cm</td>
</tr>
<tr>
<td>close to tollgate</td>
<td>60 km/h</td>
<td>1.1400</td>
<td>width 6 cm</td>
</tr>
<tr>
<td>very close to tollgate</td>
<td>20 km/h</td>
<td>1.1476</td>
<td>width 6 cm</td>
</tr>
<tr>
<td>after passing by tollgate</td>
<td>5 km/h</td>
<td>1.1623</td>
<td>width 6 cm</td>
</tr>
</tbody>
</table>

Table 6. The optimum texturing design guide of warning grooving on general expressway

<table>
<thead>
<tr>
<th>classification</th>
<th>average speed</th>
<th>minimum dynamic load amplification factor</th>
<th>warning grooving</th>
</tr>
</thead>
<tbody>
<tr>
<td>average speed</td>
<td>80 km/h</td>
<td>1.0480</td>
<td>width 6 cm</td>
</tr>
</tbody>
</table>
Table 7. The optimum texturing design guide of warning grooving on climbing lanes

<table>
<thead>
<tr>
<th>classification</th>
<th>average speed</th>
<th>class-7 heavy vehicle</th>
<th>warning grooving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>minimum dynamic load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>amplification factor</td>
<td></td>
</tr>
<tr>
<td>low lane slope / downhill lane</td>
<td>80 km/h</td>
<td>1.1328</td>
<td>width 6 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spacing 150 cm</td>
</tr>
<tr>
<td>medium lane slope</td>
<td>60 km/h</td>
<td>1.1400</td>
<td>width 6 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spacing 250 cm</td>
</tr>
<tr>
<td>high lane slope</td>
<td>20 km/h</td>
<td>1.1476</td>
<td>width 6 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spacing 250 cm</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

Dynamic load increases up to 2.23% and 1.47% in the general grooving and drainage grooving, respectively, which shows those grooving types have a little dynamic effects on the surface of cement concrete pavement. However, in the warning grooving, dynamic load highly increases up to 10.09%, so that additional analyses are performed at the condition of the pavement with warning grooving at various width and spacing.

Also it is found that dynamic load increment in maximal when width and spacing of warning grooving are combination of width 10 cm, spacing 30 cm and width 6 cm, spacing 30 cm. Dynamic load increment of class-7 heavy vehicle is shown by 20% or more compared to other vehicles at the same speed. In order to evaluate dynamic load amplification factor at different warning grooving width and spacing, dynamic load increments for the several representative vehicles are compared. The results show that dynamic load is not as much affected by the width of the warning grooving as the spacing. Especially when the spacing of the warning grooving is 3 m, dynamic load increment is minimal.

This study has performed additional analyses of the divided spacing of warning grooving. From the results, it is found that the conditions with width 6 cm, spacing between 150 cm and 250 cm in the warning grooving make it possible to minimize the impacts of dynamic load.

REFERENCES

